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Abstract
Recent years have witnessed the extraordinary development of
automatic speaker verification (ASV). However, previous works
show that state-of-the-art ASV models are seriously vulnera-
ble to voice spoofing attacks, and the recently proposed high-
performance spoofing countermeasure (CM) models only fo-
cus solely on the standalone anti-spoofing tasks, and ignore the
subsequent speaker verification process. How to integrate the
CM and ASV together remains an open question. A spoofing
aware speaker verification (SASV) challenge has recently taken
place with the argument that better performance can be deliv-
ered when both CM and ASV subsystems are optimized jointly.
Under the challenge’s scenario, the integrated systems proposed
by the participants are required to reject both impostor speak-
ers and spoofing attacks from target speakers, which intuitively
and effectively matches the expectation of a reliable, spoofing-
robust ASV system. This work focuses on fusion-based SASV
solutions and propose a multi-model fusion framework to lever-
age the power of multiple state-of-the-art ASV and CM models.
The proposed framework vastly improves the SASV-EER from
8.75% to be 1.17%, which is 86% relative improvement com-
pared to the best baseline system in the SASV challenge.

1. Introduction
Automatic speaker verification (ASV) is a technology to ver-
ify claimed speakers by the given speech segments. Resort-
ing to the power of deep neural networks (DNNs) in repre-
sentation learning, speaker embedding-based ASV approaches
have achieved state-of-the-art performances on several bench-
mark datasets [1–12]. Despite the impressive performance, cur-
rent ASV models are vulnerable to spoofing attacks, which in-
clude audio replay, text-to-speech (TTS) and voice conversion
(VC) [13–18], back-door attacks [19] and related emerged ad-
versarial attacks [20, 21]. Various methods have been proposed
to tackle adversarial attacks [22–29].

At the same time, led by a series of challenges [13–16],
many research efforts have investigated countermeasure (CM),
also known as anti-spoofing, to defend and detect spoofing at-
tacks. The current methods utilize end-to-end neural network
structures [30, 31] to distinguish between spoofing speech from
bona fide speech by either the raw speech signal or hand-crafted
features. Recently, CM systems have been significantly im-
proved by a series of works [30–37]. CM models are vulner-
able to adversarial attacks [38], and some efforts are dedicated
to address such attacks [39, 40].

While ASV and CM systems have been successfully de-
veloped as individual tasks, limited efforts have been devoted

to their integration. Jung et al. [41] recently held a spoofing
aware speaker verification (SASV) challenge, which is a spe-
cial session in ISCA INTERSPEECH 2022, with the argument
that better performance can be delivered when CM and ASV
subsystems are both optimized. They released official proto-
cols and baselines based on the ASVspoof 2019 dataset [42].
Compared with previous anti-spoofing challenges that measure
CM systems based on fixed ASV models, this challenge con-
siders CM and ASV together as an integrated system and uses a
variant of classic equal error rate (SASV-EER) as a primary as-
sessment metric. Under this metric, the integrated systems are
required to reject both impostors speakers and spoofing attacks
from target speakers, which intuitively and effectively matches
the expectation of a reliable, spoofing-robust ASV system.

In this work, we focus on fusion-based SASV solutions
and propose a multi-model fusion framework to leverage the
power of multiple state-of-the-art ASV and CM models. The
ASV and CM models we covered include MFA-Conformer [8],
Resnet34 [10], ECAPA-TDNN [9] and AASIST [35], AASIST-
L, RawGAT-ST [36]. Based on the proposed framework, we
study combinations of different ASV and CM models. They
vastly improve the SASV-EER from 8.75% to 1.17%, which
achieves 86% relative improvement compared to the best base-
line system in the SASV challenge.

2. Related work
2.1. Automatic speaker verification

Automatic speaker verification aims to determine whether a
given utterance belongs to the claimed speaker. Most mod-
ern ASV approaches are based on speaker embeddings, i.e.,
representing speech segments into fix-length identity vectors.
Speaker verification can be achieved by measuring the distance
between different speaker embeddings. These methods train the
models to distinguish speakers from the variable-length speech
signal. Then an embedding of the bottleneck layer is extracted
as a speaker-dependent vector to identify speaker information.
Following the speaker embedding scheme, current ASV sys-
tems mainly involve two steps: the speaker embeddings are ex-
tracted from the enrollment and test speech to respectively rep-
resent the identification of the target speaker and verified speech
segment. Then, a metric is used to score the test speech based on
enrollment speech, where the metric can be cosine distance or
more advanced statistical models like PLDA [43]. After many
years’ development, many technologies and typologies have
been introduced to further improve speaker embedding models,
including better structures [5, 9, 10], training schemes [44, 45]
and pooling approaches [46, 47].
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Figure 1: The proposed multi-model fusion framework.

2.2. Countermeasures

Countermeasure approaches for ASV systems are developed
to detect the spoofing samples generated by attack techniques,
including text-to-speech, voice conversion, and audio replay.
Conventional CM models use a Gaussian Mixture Model
(GMM) classifier as back-end with different input features
[48–50]. In [51], a combination of CNN and RNN models is
proposed as a DNN-based solution. [31] introduced Resnet in
this task, which is further improved by [34] using large margin
cosine loss and frequency masking data augmentation. [36] was
first to introduce RawNet that directly uses raw speech wave-
form as input. [52] introduced graph attention networks (GAT)
with the ability of modeling the relationships between neigh-
bouring sub-bands or segments of spectrum features. Based on
GAT, a series of extensions are proposed in [35, 36] using both
raw audio and spectrum features. Besides, a one-class learning
method was proposed in [32] for better generalization ability.
Such previous efforts presented a variety of anti-spoofing mod-
els with high performance.

3. Methodology
3.1. SASV systems

There are two main categories of spoofing-aware speaker ver-
ification (SASV) systems: multi-task learning based systems
and fusion based systems. The multi-task learning systems are
trained by both the anti-spoofing loss and speaker verification
loss. The speaker verification task and anti-spoofing task share
the same input features and the embedding backbone layers.
However, such a system requires both speaker labels and anti-
spoofing labels for training. Only the ASVspoof dataset [53]
can fulfill such requirements. The ASVspoof dataset contains
only a small number of speakers, which will induce the trained
multi-task learning system to overfit to only a small number of
speakers, resulting limited generalization capacity to real-world
applications [41]. Another disadvantage of such systems is that
the learning objectives of anti-spoofing and speaker verification

systems are different – anti-spoofing models rely on the device
information to detect the spoofing utterances, yet the speaker
verification systems tend to remove such information which is
incongruent with speaker discrimination [54].

The other kind of SASV system is the fusion-based sys-
tems, which may involve embedding-level or score-level fusion.
Such systems can rely on state-of-the-art speaker verification
models trained on large-scale datasets [4,5] and state-of-the-art
spoofing countermeasure models.

Thus, the SASV challenge adopts the second type of sys-
tems as baselines. We will introduce the details of such systems
in the next subsection.

3.2. Baseline systems

The SASV Challenge 2022 provides two baselines. The or-
ganizers provided one pre-trained speaker verification model,
ECAPA-TDNN, and one anti-spoofing model, AASIST. Both
models attain state-of-the-art performance for their own tasks.

Baseline1 is a score-level fusion method. For a given trial,
which consists of an enrollment utterance and a testing utter-
ance, ECAPA-TDNN will be used to obtain the enrollment em-
bedding and the testing embedding from the enrollment and
testing utterances. Then the cosine score of the enroll embed-
ding and testing embedding is calculated. The anti-spoofing
score is also obtained from the spoofing countermeasure (CM),
AASIST, given the testing utterance as the input. Subsequent
addition of the SV and CM scores produces the final score,
which indicates whether such a trail is target trial or not.

Baseline2 is an embedding-level fusion method. ECAPA-
TDNN is used to obtain the enrollment embedding and testing
embedding, and AASIST is used to obtain the countermeasure
embedding. These three embeddings are concatenated and fed
to a deep neural network to predict whether the trial belongs to
the target or not.



3.3. Proposed systems

The baselines of the SASV Challenge do achieve better per-
formance, compared with using speaker verification models or
anti-spoofing models alone, as shown in Table 4. However,
Baseline1 does not consider that the score scales of ASV score
and CM score are in different ranges, and Baseline2 does not
consider fine-grained fusion. Thus they cannot take good ad-
vantage of the state-of-the-art ASV and anti-spoofing models in
boosting their performances.

This motivates us to propose an ensemble model for the
SASV task. We will first report the details of the framework fol-
lowed by rational analysis. The proposed framework is shown
in Figure 1. ASV-1, ASV-2, ..., ASV-m denote m ASV pre-
trained models. CM-1, CM-2, ..., CM-n denote n counter-
measure models. xe and xt are the enrollment and testing
utterances, respectively. Given a trial composed of an enroll-
ment and testing utterance, m cosine scores, s1sv, s2sv, ..., smsv
are calculated by m pre-trained speaker verification models. ⊕
denotes the concatenation procedure. f and g are the train-
able countermeasure (CM) layer and prediction layer, respec-
tively. Given the testing utterance, n testing embeddings,
h1, h2, ..., hn are extracted by n pre-trained anti-spoofing mod-
els, respectively. Then the n testing embeddings are firstly con-
catenated, and then fed into the countermeasure layer to get the
countermeasure score scm. We use the cross-entropy loss on
scm to guide the CM layer learn to distinguish between the tar-
get trials and other trials:

Lcm = −log exp(slcm)∑1
j=0 exp(s

j
cm)

, (1)

where l ∈ {0, 1} is the label, indicating whether the trail is tar-
get or not. Then we concatenate scm and s1sv, s

2
sv, ..., s

m
sv , and

then input them to the prediction layer to get the final prediction
ŷ Cross-entropy is derived to train the entire model:

Lpr = −log exp(ŷl)∑1
j=0 exp(ŷj)

, (2)

where l ∈ {0, 1} is the label, denoting whether the input trail
is target or not. To be specific, 1 denotes the non-spoofed target
trial. The final loss is:

L = Lcm + Lpr. (3)

Previous years have witnessed the development of state-of-
the-art speaker verification models that are trained on very large
datasets. Well-trained ASV models attain very good perfor-
mance for in-domain data as shown in Table 2, and have good
generalization and reliability for out-of-domain data as shown
in Table 4. As a result, we directly use the scores provided by
the ASV for fusion. Anti-spoofing models detect artifacts lo-
cated in specific spectrum segments or temporal segments [35],
and different anti-spoofing models focus on different kinds of
artifact. Thus we propose to ensemble different CM embed-
dings from a group of countermeasure models. The results
shown in Table 4 and Figure 2 show the effectiveness of the
proposed method.

4. Experimental setup
4.1. Dataset

The SASV Challenge restricts the training data for ASV to the
VoxCeleb2 development set, and the training data for the anti-

spoofing model to ASVspoof 2019 training set. We strictly fol-
low the constraints released by the Challenge and more details
can be found in [41].

Released with Automatic Speaker Verification Spoofing
And Countermeasures Challenge 2019, the ASVspoof 2019
dataset aims to determine whether the advances in text-to-
speech and voice conversion technology pose increased threat
to automatic speaker verification and the reliability of spoofing
countermeasures [53]. It aligns the anti-spoofing task closely
with the ASV task, and sparks the community’s interest in
the SASV Challenge. The ASVspoof 2019 dataset consists of
bona fide speech trails collected from the VCTK corpus [55],
and spoofing attack trials synthesised by text-to-speech, voice
conversion, or replay. The speakers, with their corresponding
bona fide and spoofing trails, are partitioned into three subsets,
namely the training (20 speakers with 2,580 bona fide trails and
22,800 spoofing trails), development (20 speakers with 2,458
bona fide trails and 22,296 spoofing trails) and evaluation sets
(67 speakers with 7,355 bona fide trails and 63,882 spoofing
trails). Moreover, the spoofing attack algorithms used in the
evaluation set are different from those in training and develop-
ment set, which is intended to promote the generalization per-
formance of the developed systems. Based on the ASVspoof
2019 dataset, the SASV Challenge provided the development
and evaluation protocols which list target, non-target, and spoof
trials, and for each them, multiple enrolment utterances exist.

For ASV training, VoxCeleb2 [5] is a benchmark dataset
for speaker verification, containing audio clips collected from
YouTube. There are totally 1,092,009 utterances from 5,994
speakers in the VoxCeleb2 development set.

4.2. Evaluation metrics

Three kinds of EERs, SV-EER SPF-EER and SASV-EER, are
used by the SASV Challenge, and SASV-EER on the ASVspoof
2019 evaluation set is adopted as the main evaluation metric.
Equal error rate (EER) is the overall error rate when a thresh-
old is set such that the false accept rate equals the false reject
rate. The lower the EER, the better the discrimination capac-
ity the model. Widely used in binary classification problems,
it is a more objective and comprehensive metric than accuracy,
especially on data with unbalanced classes.

In this challenge, EERs are used to evaluate the perfor-
mance of the models on three sub-tasks: ASV, anti-spoofing,
and SASV [41]. The definition of the EERs are showed in Ta-
ble 1. For all three sub-tasks, trails from the target speaker are
treated as positive samples, while the definition of negative sam-
ples is different. For the SASV sub-task, both the non-target
speakers’ bona fide speech trails and spoofing trails are consid-
ered negative samples. For ASV sub-task, only the non-target
speakers’ bona fide speech trails are considered as negative
samples. For anti-spoofing sub-task, only spoofing trails aimed
at target speaker are considered as negative samples, which is
different from other general anti-spoofing tasks.

4.3. Implementation setup

4.3.1. ASV

Following the requirements of the SASV challenge, we only use
the development set of VoxCeleb2 as the training data. During
training, we randomly extract 3-second segment of each seg-
ments and use the on-the-fly feature extraction procedure. The
input features for training are 80-dimensional Mel spectrogram
with the window length of 25 ms and the hop size of 10 ms. No



Table 1: Description of EERs. ”+” denotes positive samples,
and ”-” denotes negative samples. Blank denotes samples not
considerated in the calculation of the EER.

Metrics Target Non-target Spoof
SASV-EER + - -
SV-EER + -
SPF-EER + -

data augmentation and voice activity detection are applied.
For training the speaker verification backbone models, we

adopt three well-known structures, namely, MFA-Conformer
[8], ECAPA-TDNN [9] and Resnet34 [56]. For the ECAPA-
TDNN, we use the pre-trained model provided by the SASV
Challenge. MFA-Conformer and Resnet34 are trained by the
additive margin Softmax (AM-Softmax) loss [57] with the mar-
gin as 0.2 and the scaling factor as 30. The speaker embedding
dimensions of all three models are 192. Adam optimizer with
an initial learning rate of 0.001 is adopted and the learning rate
decreases by 50% every 4 epoch. Also the weight decay is set
as 1e-7 to avoid overfitting.

Then we evaluate the three models using equal error rate
(EER) on the VoxCeleb1-O testing set [4]. Cosine scoring is
implemented and the results are shown in Table 2. As we can
see, the MFA-Conformer backbone achieves the best EER of
0.91%, which outperforms the ECAPA-TDNN provided by the
SASV challenge.

Table 2: ASV performance on VoxCeleb1-O testing set.

Model Frontend EER(%)
MFA-Conformer Mel spectrogram 0.91
Resnet34 Mel spectrogram 1.50
ECAPA-TDNN Mel spectrogram 0.96

4.3.2. Anti-spoofing

For the anti-spoofing model, we adopt AASIST [35], AASIST-
L, and RawGAT-ST [36]. AASIST-L is the light version of AA-
SIST. The AASIST pre-trained model is provided by the SASV
challenge. The training data for the three models is from the
logical access of ASVspoof 2019 [53], which is composed of
spoofing audios generated by text-to-speech and voice conver-
sion. The evaluation metrics for the anti-spoofing model on the
evaluation set are min-tDCF and EER. As we can see in Ta-
ble 3, AASIST is with the best performance, namely the lowest
min-tDCF and EER.

4.3.3. Fusion method

We adopt the models in Section 4.3.1 and Section 4.3.2 as the
ASV models and CM models, respectively, as shown in Fig-
ure 1. For the CM layer f in Figure 1,we use three fully con-
nected layers with hidden dimensions 256, 128 and 64 respec-
tively. For the prediction layer g, we use one linear fully con-
nected layer. We train our model using Adam optimizer with
an initial learning rate as 0.0001. The batch size is 32 and the

Table 3: Anti-spoofing model performance on ASVspoof 2019
evaluation set.

Model Frontend min-tDCF EER(%)
RawGAT-ST Raw waveform 0.0335 1.06
AASIST-L Raw waveform 0.0309 0.99
AASIST Raw waveform 0.0275 0.83

epoch number is set as 200. We selected the best model based
on the development set of the ASVspoof 2019 dataset.

5. Experimental results and analysis
In this section, we will first show the experimental results, fol-
lowed by the experimental observations and analysis.

5.1. Experimental results

Table 4 shows the three evaluation metrics provided by the
SASV Challenge on the ASVspoof 2019 development and eval-
uation sets. A1-A3 denote using only speaker verification
model. B1-B3 denote using only anti-spoofing model. C1 and
C2 are the two baselines provided by the SASV challenge. D1-
D9 denote using the fusion of one speaker verification model
and one anti-spoofing model, e.g., MFA-Conformer AASIST
means the combination of MFA-Conformer as speaker veri-
fication and AASIST as the anti-spoofing model. E1-E3 de-
note using the fusion of one speaker verification model with all
the anti-spoofing models. F1-F3 denote the fusion of all three
speaker verification models and one anti-spoofing model. G1
denotes the fusion of all the speaker verification models and
anti-spoofing models.

Figure 2 illustrates the histogram plots of all the systems.
All three kinds of trials, including target, non-target and spoof
trials, are taken into account. The x-axis shows the prediction
scores that indicate whether the trial is from the target or not.
(a)-(c) are the plots for systems only using speaker verifica-
tion models, including MFA-Conformer, ECAPA-TDNN and
Resnet34. (d)-(f) are the plots for systems only using the anti-
spoofing models, including AASIST, AASIST-L and RawGAT-
ST. (g) and (h) are the plots for Baseline1 and Baseline2. (i) is
the plot for the system using all three speaker verification mod-
els and anti-spoofing models for fusion.

5.2. Observations and analysis

We have the following observations and analysis:
Only using speaker verification models. A1-A3 models,

which are state-of-the-art ASV frameworks, performed well on
the sub-task speaker verification, as shown in Table 2. Regard-
ing the speaker verification performance, they generalize well
to the ASVspoof 2019 evaluation set, e.g., the evaluation SV-
EERs for the ECAPA-TDNN, MFA-Conformer and Resnet34
are 1.86%, 1.38% and 1.08%, respectively. However, they
give poor results on detecting spoofing attacks, with evaluation
SPF-EERs being 30.75%, 30.22% and 29.76% for the ECAPA-
TDNN, MFA-Conformer and Resnet34, respectively. Also, as
shown in Figure 2 (a)-(c), according to the distribution of the
predicted scores, ASV models attain poor ability in distinguish-
ing between spoofing trials and target trials, although they eas-
ily discriminate between target and non-target trials. Finally,



Table 4: Performance of all systems on the ASVspoof 2019 development and evaluation dataset. Three evaluation metrics, namely
SV-EER, SPF-EER and SASV-EER are illustrated.

Model SV-EER SPF-EER SASV-EER
dev eval dev eval dev eval

(A1) ECAPA-TDNN 1.64 1.86 20.28 30.75 17.37 23.84
(A2) MFA-Conformer 1.61 1.38 19.94 30.22 16.91 23.28
(A3) Resnet34 1.68 1.08 17.40 29.76 14.62 22.69
(B1) AASIST 46.01 49.24 0.07 0.67 15.86 24.38
(B2) AASIST-L 48.30 49.04 0.13 0.84 15.72 24.81
(B3) RawGAT-ST 51.25 49.24 0.34 0.96 15.96 24.85
(C1) Baseline1 [41] 14.89 35.10 6.94 0.50 2.09 19.15
(C2) Baseline2 [41] 14.38 16.01 0.01 1.23 5.41 8.75
(D1) MFA-Conformer AASIST 1.48 1.47 0.2 1.08 0.88 1.35
(D2) ECAPA-TDNN AASIST 1.48 1.58 0.2 1.06 0.99 1.42
(D3) Resnet34 AASIST 1.49 1.02 0.20 1.53 0.88 1.32
(D4) MFA-Conformer AASIST-L 1.68 1.68 0.15 2.03 1.21 1.83
(D5) ECAPA-TDNN AASIST-L 1.61 1.62 0.19 2.18 1.10 1.92
(D6) Resnet34 AASIST-L 1.68 1.69 0.18 2.01 1.15 1.84
(D7) MFA-Conformer RawGAT-ST 2.16 2.09 0.35 0.78 1.55 1.82
(D8) ECAPA-TDNN RawGAT-ST 2.56 2.17 0.04 0.78 1.81 1.94
(D9) Resnet34 RawGAT-ST 2.09 1.97 0.40 0.79 1.55 1.69
(E1) MFA-Conformer CM-ALL 1.91 1.66 0.20 0.64 1.01 1.30
(E2) ECAPA-TDNN CM-ALL 1.39 1.73 0.20 0.74 0.81 1.40
(E3) Resnet34 CM-ALL 1.28 1.12 0.26 1.43 0.74 1.32
(F1) SV-ALL AASIST 1.42 1.30 0.27 1.61 0.81 1.41
(F2) SV-ALL AASIST-L 1.42 1.33 0.47 3.99 0.88 2.95
(F3) SV-ALL RawGAT-ST 1.82 1.64 0.4 0.82 1.28 1.39
(G1) SV-ALL CM-ALL 1.27 1.20 0.20 1.15 0.81 1.17

the SASV-EERs are spoiled by the spoofing trials. This phe-
nomenon is reasonable, as the ASV is trained to distinguish
different speakers. And in order to acquire good speaker ver-
ification ability, the ASV model sometimes has to remove the
incongruent information for speaker discrimination, such as mi-
crophone information, channel information, yet such informa-
tion is helpful for anti-spoofing tasks.

Only using anti-spoofing models. CM models (B1-B3)
work well in detecting spoofing trials, showing satisfactory per-
formance on SPF-EER, e.g. AASIST, AASIST-L and RawGAT-
ST are with the evaluation SPF-EER of 0.67%, 0.84% and
0.96% respectively as shown in Table 4. However, because of
their speaker-unrelated training objective, they are incapable of
verifying speakers, yielding SV-EERs close to 50%, which indi-
cates that their prediction for speaker verification task is nearly a
random guess. Unsurprisingly, we also note that the histograms
of the target and non-target speakers almost completely overlap
in Figure 2 (d)-(f), which is another evidence for their poor abil-
ity to distinguish among speakers. As a result, the performance
of spoofing-aware speaker verification of the countermeasure
models are limited, e.g., AASIST, AASIST-L and RawGAT-ST
are with the evaluation SASV-EERs of 24.38%, 24.81% and
24.85%, respectively. The anti-spoofing models are trained to
distinguish whether an utterance is spoof or not, and the training
criterion has no relation to speaker verification.

Two baselines. Compared to the individual models, the two
baseline fusion models are superior to using only ASV mod-

els or the spoofing countermeasure models alone in the SASV
Challenge. Among them, Baseline2 achieves an evaluation
SASV-EER of 8.75%, which is better than Baseline1 with an
evaluation SASV-EER of 19.15%, which is expectable. This is
because simple score-level fusion used in Baseline1 does not
guarantee that the output scores of ASV and countermeasure
belong to a unified space. The ASV scores range from -1 to 1,
yet the countermeasure scores range from -20 to 15. Computing
simple additions will make the countermeasure score dominate
the ASV score. Figure 2 (g)(h) show that the distributions of the
scores predicted by Baseline1 for target and non-target speak-
ers are highly overlapped, while those of Baseline2 are much
more separated. Baseline2 uses trainable deep neural networks
to do better fusion among the ASV features and countermea-
sure features, and they can make a proportion of non-target tri-
als distinguishable from the target trials as shown in Figure 2
(h). However, the performance of Baseline2 on SV sub-task is
still not satisfactory, which motivates us to explore further pos-
sibilities for fusion-based models.

Proposed approach. The proposed models fuse 3 SOTA
ASV models (A1-A3) and 3 SOTA anti-spoofing CM models
(B1-B3). We have developed a total of 16 models with compre-
hensive experiments based on the proposed multi-model fusion
framework. As shown in Table 4, all the proposed models out-
perform the baseline models with a large margin on the SASV-
EER metrics, while retaining universally good performances on
SV-EER and SPF-EER. Empowered by the proposed frame-



(a) MFA-Conformer (b) ECAPA-TDNN (c) Resnet34

(d) AASIST (e) AASIST-L (f) RawGAT-ST

(g) Baseline1 (h) Baseline2 (i) SV-ALL CM-ALL

Figure 2: The histogram plots of different systems.

work, fusion models own significant discrimination capacity re-
garding the three tasks. Among them, 9 models (3 by 3), D1-
D9, are fused from the permutations of ASV-CM model pairs.
D1-D3, which incorporate ASSIST as the CM model, have bet-
ter results than fusion models incorporating other single CM
model. D4-D6, which incorporate ASSIST-L as the CM model,
show slight over-fitting on anti-spoofing task and lower EER on
the ASV task compared with the respective individual models.
D7-D9, which incorporate RawGAT-ST as the CM model, re-
tain superior performance on anti-spoofing task but compromise
the SV-EER. Further, we constructed 6 more models by involv-
ing all 3 ASV models with single CM model (E1-E3), and by
involving single ASV model with all 3 CM models (F1-F3), re-
spectively. The models show better performance than D1-D9 in
general, benefiting from the more comprehensive model ensem-
ble. F2 shows over-fitting in the anti-spoofing and SASV tasks.
Finally, to push the limits of the multi-modal fusion framework,
we incorporate all 3 ASV models and all 3 CM models and
construct SV-ALL CM-A model (G1). As expected, the model
yields a SASV-EER of 1.17% given the evaluation trials, which
gives the best performance among all models and achieves an
86.63% relative boost compared to Baseline2. Besides, G1 gave

performances comparable with relevant SOTA models in the
other two sub-tasks. Figure 2 (i) also shows that the distribu-
tions of the 3 classes are well-separated, which verifies the ef-
fectiveness of the proposed method.

6. Conclusion
In order to take advantage of multiple state-of-the-art ASV and
CM models, we propose a fusion-based framework to solve
the SASV task. We comprehensively do the experiments to
show the effectiveness of the proposed method. The best fusion
model effectively decreases the SASV-EER of the best baseline
from 8.75% to 1.17%, achieving an improvement of 86% rela-
tive (6.58% absolute).
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